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The importance of large-scale production of plasmid DNA (pDNA) has increased steadily 
over the years due to the development of a growing number of direct and indirect appli-
cations. To meet the growing demand for pDNA, significant efforts must be made towards 
improving its manufacturing. In particular, the digitalization of pDNA manufacturing could 
enable faster process optimization, support data-driven decision-making, and contribute to 
waste reduction and more sustainable operations. In this commentary article, we further 
contend that the benefits of digitalization should be captured early on at the research and 
development stage of the manufacturing process. To support this vision, we present a con-
ceptual framework for incorporating digitalization into pDNA process development, discuss 
technological enablers, explain how digital methods could overcome traditional limitations, 
and delve into implementation considerations.

PLASMIDS AND THE 
DIGITALIZATION OF 
BIOMANUFACTURING

Plasmids are pervasive across the gene and 

cell therapy industry of today [1,2]. As bio-

logicals, they are used to deliver genetic 

information to patient target cells or as 

vehicles to deliver the molecular compo-

nents of gene editor systems. Moreover, 

plasmids serve as essential raw materials 

for the manufacturing of engineered cell 

products (e.g., CAR-T cells) or of other bio-

logicals (e.g., viral vectors and mRNA). The 
ability to manufacture plasmids cost-effec-

tively on a large scale is thus critical for many 

Nucleic Acid Insights 2025; 2(4), 109–121 · DOI: 10.18609/nuc.2025.018

DNA  

ENGINEERING AND MANUFACTURING



110 Nucleic Acid Insights 2025; 2(4), 109–121 · DOI: 10.18609/nuc.2025.018

NUCLEIC ACID INSIGHTS

biopharmaceutical companies and research 

institutions [3]. In other circumstances, for 

example, in the production of lentiviral vec-

tors for cell therapies, the actual challenge 

may be to develop GMP-compliant scale-

down models capable of producing pDNA in 

a cost-effective manner [4]. One approach to 

increase efficiency, throughput and scalabil-
ity, conserve resources, and minimize envi-

ronmental impact in pDNA manufacturing 

is to embrace digitalization [3].

A fundamental principle of digitaliza-

tion is the mapping of the physical space in 

a digital object via a digital twin (DT) [5]. A 

DT is a continuously updated in  silico rep-

resentation of a real-world system or pro-

cess that acts as an identical counterpart in 

the digital space. An essential feature of a 

fully functional DT is a two-way dataflow 
between the physical system and its digital 

counterpart [6]. Ultimately, the DT gener-

ates a dynamic or static profile of the pro-

cess based on historical and near-real-time 

measurements across an array of dimen-

sions [6]. DTs are valuable for system sim-

ulation, integration, testing, monitoring, 

maintenance and even training, and are 

an essential building block of model-based 

systems engineering. Furthermore, in con-

junction with mathematical modeling, 

DTs are likely essential for the successful 

implementation of continuous biomanu-

facturing, as they enable real-time process 

control, predictive decision-making, and 

rapid optimization [7,8].

The creation of a DT of a biomanufac-

turing process has been advocated as one 

of the most compelling benefits of digitali-
zation [6–9]. While as a first approach this 
will involve the digitalization of well-estab-

lished manufacturing processes that are 

already in routine operation, several authors 

argue that the benefits of biomanufacturing 
should be captured early on at the research 

and development stage [10,11]. The 

development of a process compliant with 

Industry 4.0, which is characterized by the 
integration of digital technologies—such 

as the Internet of Things (IoT), artificial 
intelligence, data analytics, and automa-

tion—into manufacturing systems, inher-

ently also demands the development of its 

DT [12]. The research question underlying 

this approach is therefore ‘How to develop 

and incorporate a digitalization framework 

in the conceptual design, research and 

development of (pDNA) biomanufactur-

ing processes?’. Such a framework is cur-

rently lacking, as most efforts are focused 
on digitizing established biomanufacturing 

processes.

THE LIMITATIONS OF TRADITIONAL 
PROCESS DEVELOPMENT

A real shift to a biomanufacturing sce-

nario, where a physical process and its dig-

ital counterpart communicate, interact two 

ways, and operate in synchrony without 

interruption, requires digitalization to be 

embedded early in the biomanufacturing 

research and development stage [10]. This 

entails replacing the traditional process 

development pipeline, which follows a lin-

ear, step-by-step methodology known to be 

time consuming and laborious [10,11,13], 

with a digitally centered process develop-

ment approach (Figure 1). A process draft is 

usually designed based on the available lit-

erature, in-house experience, rules of thumb 

and GMPs. Key information to bear in mind 

pertains to final product specifications (e.g., 
pDNA topology, biological potency, impurity 

limits), some of which are established with 
guidance from regulations [14]. Examples 

of process-related impurities in pDNA man-

ufacturing include host cell components 

(proteins, genomic DNA, RNA, endotoxins), 
residual reagents (solvents, salts, enzymes), 
and leachables from equipment, resins or 

filters. The final specifications will differ 
depending on the final application of the tar-

get pDNA [14]. For example, more stringent 

quality requirements regarding impurities 

will be in place if the pDNA is to be used in 

therapeutic applications, as opposed to cases 
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where it serves as a raw material for the 

manufacture of a viral vector. Today, several 

pDNA manufacturing platforms have been 

developed, which can be readily adopted for 

the production of various pDNA molecules. 

Nevertheless, the introduction of new meth-

odologies or process modifications targeted 
at generating more efficient processes will 
still require several process development 

cycles, relying heavily on human operators 

performing lab-based experimentation at 

small scale (typically 100  mL–10  L cell cul-
ture). The disadvantages of this approach 
are well recognized and include:

 f Time and cost inefficiencies

 f Limited process understanding and data 
utilization

 f Poor scalability

 f Human error and variability

 f Regulatory compliance challenges

A digitally centered process development 

approach, paired with automated experi-

mentation, could contribute to delivering 

new methodologies that generate more 

efficient processes, ultimately mitigating 
some of these limitations [10,11].

ENVISIONING A DIGITALLY 
CENTERED PDNA PROCESS 
DEVELOPMENT

A digitally centered approach to pro-

cess development relies heavily on 

FIGURE 1

© 2025, BioInsights Publishing Ltd. All rights reserved.

Replacing the (A) traditional approach to biomanufacturing process development by a (B) digitally centered 
process development.
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incorporating digitalization concepts and 

computational tools at the early stages 

of process conceptualization, design, and 

development. The technological enablers of 

this approach include mathematical model-

ling (mechanistic, hybrid, and data-driven 

models), computational fluid dynam-

ics, machine learning and AI, generative 

AI, automation and smart sensors, high 

throughput (HT) experimentation, work-

flow management systems, and edge and 
cloud computing (Table 1). This approach 

offers several benefits, including acceler-

ating development, reducing consumables 

by avoiding uninformative experiments, 

requiring fewer experiments, lowering 

error rates, and enhancing process under-

standing. Furthermore, by the end of the 

process development stage, digital models 

will be readily available to support technol-

ogy transfer, process scale-up, and subse-

quently routine operation and control. 

Here we present our view on how a digi-

tally centered alternative can be utilized to 

Scientific and technological tools for digitally centered plasmid DNA process development.

Enabler Description

Mathematical 
modeling

Mathematical process models of diverse nature (mechanistic, surrogate, data-driven, hybrid) are set up to provide 
information about key properties, variables and performance parameters/indicators (e.g., yields) of the different 
sub-processes (e.g., cell culture, unit operations), the interactions between process parameters, and product quality 
attributes (e.g., purity); these models are a key component of a DT, providing deep insights into the current state of the 
process through simulation

CFD Software tools for performing CFD dynamics simulations can play a crucial role in bioprocess scale-up by enabling the 
simulation and analysis of fluid flows within bioreactors; this facilitates the optimization of mixing, mass transfer, and 
overall reactor design, which are essential for efficient scale-up

Machine learning and 
AI

AI and machine learning contribute to smart automation and analytics through the identification of optimal process 
parameters, automation of complex tasks, prediction of potential issues; enabling the shift to predictive rather than 
reactive process control

Generative AI 
(large-language 
models)

If trained on large and adequate datasets of bioprocess parameters, LLMs can suggest improvements to increase 
efficiency and product quality, or assist in designing more effective experiments, potentially reducing the number of 
iterations required in bioprocess development

Automation and smart 
sensors

Bioprocessing workflows can be optimized, monitored and controlled in real-time by integrating advanced 
technologies such as sensors and IoT devices for data acquisition, and AI and machine learning for predictive modeling 
and decision-making; automated systems can handle tasks such as sampling, analysis, and equipment maintenance 
and contribute to enhance process efficiency, improve product quality, and reduce variability by minimizing human 
intervention

HT experimentation HT experimentation using robotic platforms enable rapid, parallel execution of numerous experiments, significantly 
accelerating process optimization and development; these systems can dispense reagents, mix solutions, and transfer 
samples, minimizing human error and increasing experimental throughput; it is thus possible to explore a broader 
range of parameters and conditions simultaneously, leading to faster identification of optimal production conditions; 
if integrated with advanced data analytics and computational modeling, HT experimentation can enhance decision-
making capabilities and reduce development timelines

Work flow management 
systems (WMS)

By implementing WMS, processes can become fully documented, traceable and reproducible, allowing for reuse of 
the generated data; WMS enhance interoperability, thus enabling better collaboration between scientists; they allow 
for the seamless choreographing of tasks, ensuring that complex workflows are executed efficiently and in the correct 
sequence; additionally, WMS facilitate structured storage for data and metadata, preserving essential context for 
future analyses; built-in error detection mechanisms help identify issues early, triggering automated error handling 
procedures to maintain workflow reliability and data integrity

Edge and cloud 
computing

Edge computing enables real time data processing and control of the biomanufacturing facilities, empowering quick 
adjustments; cloud computing provides scalable storage, big data analytics, and collaborative platforms for long term 
data analysis, process optimization and predictive modelling

CFD: computational fluid dynamics. HT: high throughput. WMS: Workflow Management Systems.

TABLE 1
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aid, guide and accelerate the development 

and establishment of a pDNA manufactur-

ing process. The overall goal is to develop 

an integrated model toolset that exam-

ines the entire biomanufacturing process, 

providing clarity on bottlenecks, high-

lighting optimization opportunities, and 

ultimately enhancing superior product 

quality and efficiency in laboratory opera-

tions. Specifically, we propose an approach 
that involves synergies between:

 f Experimentation

 f Digitalization

 f HT model-assisted experimentation 
activities (Figure 2)

These intertwined collaborative research 

activities should cover the upstream and 

downstream processing stages of plasmid 

manufacturing. 

Experimental setting up of  
a benchmark process

An experimental benchmark process is 

initially defined based on available knowl-
edge and rules of thumb [15]. This heu-

ristic approach involves the selection of 

a strain of the producer Escherichia coli  
with genotypes suitable for pDNA ampli-

fication, the preparation of banks of cells 
transformed with the target pDNA, and 

the set-up of key analytics (e.g., gel elec-

trophoresis, HPLC, ELISA). Then, a work-

ing pDNA manufacturing process should 

be drafted and established at lab scale. 

This entails cultivating cells to amplify 

pDNA and then setting up a downstream 

processing train of operations to recover, 

isolate, and purify the pDNA. The goal 

is to quickly obtain initial datasets (e.g., 

time series data describing microbial cell 

culture and pDNA amplification, recovery 
yields of unit operations, etc.) that can 
be used to jump start and advance model 

development and guide HT experimenta-

tion for process optimization. 

Modelling of upstream  
and downstream processing

Mathematical models are developed to rep-

resent, analyze, and predict the complex 

system surrounding pDNA manufactur-

ing. This calls for selecting an appropriate 

model structure that aligns with the bio-

logical and physical nuances of the differ-

ent operations in the manufacturing train. 

The models should be able to describe and 

predict the dynamics of cell growth and 

pDNA amplification. This requires the 
establishment of time course relations 

between variables such as the concentra-

tion of key nutrients (e.g., carbon source), 
biomass concentration, and pDNA titers 

[16,17]. Stoichiometric models of E.  coli 
metabolism can also be useful in this con-

text [18,19]. Models used to describe the 

isolation and purification of pDNA from the 
E. coli cells should predict the performance 

metrics of various operations (e.g., tan-

gential flow filtration, precipitation, chro-

matography), especially in terms of yield 
and purification efficiency. Draft models 
for a particular operation are first tested 
using the corresponding initial data sets. 

Simulation results are then used to guide 

the design of additional experiments, such 

as model-based design of experiments 

[20–22]. The new sets of experimental 

data are further used to refine and validate 
the models. These experimental/modelling 

development cycles should be repeated 

until a satisfactory model is obtained. An 

illustration of this approach is provided by 

Muller et al. in the context of rAAV produc-

tion [23]. Starting with shaker flask data, 
satisfactory process models were obtained 

after two to three iterative cycles combin-

ing high-throughput (HT) runs in a fully 
automated microbioreactor system with 

hybrid model refinement. Benchmarking 
this approach against a statistical Design 
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of Experiments method showed that the 

model-based experimental design consis-

tently produced higher rAAV titers with 

fewer total experiments. Rigorous valida-

tion should be made by comparing model 

outputs against separate experimental 

datasets. The outcome is a set of robust 

models that reflect experimental observa-

tions, provide insights into the process and 

support subsequent process optimization. 

High-throughput model-assisted 
experimentation activities

Optimization of pDNA manufacturing can 

then be performed by resorting to auto-

mated HT screening platforms [24–26], 

guided by the predictive models developed. 

Such platforms, which are being introduced 

into modern process development labs, can 

be used to screen process conditions and 

operating variables that maximize the per-

formance of the unit operation being tested 

[27–29]. Experimental workflows can be 
integrated and automated in a laboratory 

environment by resorting to heterogeneous 

devices, including liquid handling stations, 

parallel cultivation systems, and mobile 

robots [30]. For example, advanced liquid 

handling stations with embedded parallel 

mini bioreactors can be used to run up to 

48 parallel cell culture/pDNA amplification 
dynamic experiments in a process-wide 

design and optimization scheme [31,32]. 

The integration of a workflow management 
system [33] ensures the flexible yet reliable 
handling of complex HT experiments and 

FAIR data storage—findable, accessible, 

FIGURE 2

© 2025, BioInsights Publishing Ltd. All rights reserved.

Synergies between (A) experimental setting up of a benchmark process, (B) digitalization, and 
(C) high-throughput model-assisted experimentation activities.
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interoperable, and reusable (FAIR) [34]. 

Here, model-based tools can enhance infor-

mation gain and process robustness by 

enabling, for example, real-time process 

monitoring, the selection of the most rele-

vant sampling times, and the optimization 

of process control. Many downstream pro-

cessing unit operations used in pDNA man-

ufacturing such as precipitation [35,36] 

and chromatography [37,38], can also be 

optimized using HT platforms [28,29]. One 

important aspect to mention is that HT 

experimentation critically depends on HT 

analytics to rapidly evaluate multiple con-

ditions [39]. For example, an evaluation of 

48 parallel cell culture/pDNA amplification 
experiments run on a mini bioreactor plat-

form would undoubtedly involve assessing 

pDNA titers and topology. Since most scale-

down reactor systems only incorporate DO 

and pH measurements, this would require 

collecting samples, performing miniprep 

isolation, and running agarose or capillary 

electrophoresis analysis in parallel, which 

is not trivial to implement [40]. Further 

challenges include the small volumes of 

scale-down reactors, which restrict the 

sampling frequency and volume, as well 

as the large number of samples generated. 

Reality shows that, unfortunately, analyti-

cal capacity often lags behind experimental 

throughput, creating a significant bottle-

neck [39]. This mismatch between experi-

mental throughput and analytical capacity 

can slow down decision-making and delay 

process optimization, particularly in com-

plex biological systems. Notwithstanding 

the analytical challenge, the large amounts 

of heterogeneous experimental data gen-

erated by HT platforms contain valuable 

information that can be explored using 

a wide variety of machine learning (ML) 
approaches [41–43]. Examples of data-

driven methods that may be useful for opti-

mization purposes include artificial neural 
networks [44], Bayesian optimization [45–

47], deep reinforcement learning [48], and 

others [49].

Key benefits of HT experimentation 
include accelerated development, and 

the ability to perform a higher number 

of experiments while keeping the num-

ber of needed consumables low due to the 

smaller volumes. Applying model-based 

methods to design experiments with opti-

mal information gain ensures that only 

the minimum number of experiments is 

performed [50,51]. The new data gener-

ated can be used to refine and validate the 
models that have been developed. The goal 

of these activities is to determine the opti-

mal conditions for pDNA manufacturing 

and to develop a reliable digital model of 

the process. On the other hand, one should 

be aware that miniaturized systems may 

not replicate large-scale pDNA manufac-

turing (e.g., bioreactor dynamics and sub-

strate heterogeneities/gradients [52]), and 
that analytical and data handling limita-

tions can hinder the translation of results. 

Furthermore, the complexity of integrating 

automated platforms and the resources 

required to ensure regulatory compliance 

cannot be overstated.

Model integration  
and process validation

Ideally, models describing both upstream 

and downstream processing sections should 

be merged into a singular, unified model. This 
integration is still perceived as a bottleneck, 

often because upstream and downstream 

process models have focused on describing 

different sets of variables. Once integration 
is achieved, the consolidated model should 

be rigorously validated against lab-scale 

datasets (e.g., at the 1–2 L lab scale), ensur-

ing it reflects real system dynamics, and that 
it is robust and reliable [53]. 

TRANSLATION INSIGHT

Embracing digitalization concepts and 

tools at the early stages of process con-

ceptualization, design, and development 
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can accelerate development, reduce con-

sumables and error rates, increase the 

number of informative experiments, and 

ultimately improve process understanding. 

In the context of plasmid manufacturing, 

this digitally centered approach to process 

development requires synergies and inter-

connection of:

 f Experimentation

 f Digitalization

 f HT model-assisted experimentation 
activities

However, the field is in its infancy, with 
several areas requiring further study or 

pilot testing.  

For once, many of the digitalization 

tools at our disposal (Table 1) are still under-

explored in the context of process develop-

ment. For example, there is clearly room for 

the development of LLMs tailored to the 
conceptual development of processes for 

the biomanufacturing of a particular class 

of bioproducts (e.g. nucleic acids, pDNA, 

mRNA), leveraging existing literature data 
and pre-existing knowledge (e.g., company 

data, expertise). Such dedicated LLMs 
could be invaluable, for example, in the 

initial drafting of a manufacturing process. 

The use of CFD in the context of process 

scale-up can also be considered sub-optimal 

due to its high computational cost, reliance 

on simplifications that may not fully cap-

ture complex interactions, and challenges 

in accurately predicting scale-dependent 

phenomena (e.g. turbulence, mixing, and 

heat transfer). Another important area that 
requires investment is the development of 

more advanced and refined mathematical 
models capable of accurately representing 

complex biological systems, for example, 

microbial cell culture and pDNA amplifi-

cation. The importance of mathematical 

models in conjunction with the adoption of 

digitalization will be especially relevant in 

the context of continuous manufacturing, 

which is an industry trend likely to change 

the way plasmids are manufactured in the 

future [54–56]. 

Additionally, the full technical integra-

tion of the digitalization tools available 

(Table 1) in the context of process develop-

ment is still a bottleneck. Clearly, we need 

to improve our ability to manage the loop 

of hypothesis formulation, model-based 

experimental design, high-throughput 

experimentation, data evaluation, model 

adaptation, conclusion, and new hypoth-

esis generation, which still requires con-

siderable human intervention. Although 

we are far from creating a ‘Robot Process 

Development Scientist’ designed to auton-

omously automate process development, 

akin to the Robot Scientist discussed by 

King et  al. [57], the potential for digitali-

zation to contribute to the generation of 

process knowledge is huge. The necessity 

to upgrade technological infrastructure 

for real-time data integration in process 

development laboratories is also imper-

ative. Examples include the integration 

of HT experimentation and advanced 

analytics capabilities, the implementa-

tion of integrated Laboratory Information 
Management Systems (LIMS) or Electronic 
Lab Notebooks (ELN) [58], the replace-

ment of legacy laboratory instruments 

with digitally enabled, IoT-compatible sen-

sors and Process Analytical Technology 

tools (e.g., Raman, NIR, FTIR, and in  situ 

microscopy) [59], and the installation of 

systems to ensure data integrity, traceabil-

ity, and regulatory compliance in digital 

environments [60].

The implementation of digitaliza-

tion in biomanufacturing—both in pro-

cess development and operation—further 

requires a fundamental shift in how data 

are acquired and managed, aligning with 

the FAIR principles to ensure seamless 

integration, traceability, and utility across 

digital systems [61,62]. For example, this 

requires transforming heterogeneous data 
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formats (e.g., PDFs, Excel sheets) into struc-

tured, machine-readable formats (e.g., XML, 
JSON) to enable real-time synchronization 
between physical systems and their digital 

counterparts. Furthermore, the thorough 

tracking and recording of all tasks per-

formed throughout experimentation at both 

experimental and computational levels is 

critical to ensure data reproducibility [33]. 

Another important aspect of digitalization 

is data safety, also known as cybersecurity, 

which involves managing data in a respon-

sible manner to minimize the risk of a data 

breach. However, users are often not suffi-

ciently aware of such safety aspects [63]. 

One significant challenge in embracing 
digitally centered process development is 

resistance to change among stakehold-

ers. This can be addressed by demonstrat-

ing clear return on investment, ensuring 

data security, and fostering cross-disci-

plinary collaboration to build trust in dig-

ital innovations. This resistance may be 

exacerbated further by the lack of user 

knowledge—many potential users sim-

ply do not know how to use digital tools 

effectively or where to begin—as well as 
by the lack of tools specifically tailored for 
bioengineering. Clearly, a skilled workforce 

with competencies that differ from those 
of the past must be trained to understand 

the importance and value of digitalization 

tools, to utilize the new methodologies and 

associated devices in the laboratory, and to 

handle complex data outputs. This requires 

universities and research institutes to 

develop world-class educational programs 

in digital biomanufacturing, which are cur-

rently not widely available.

Although quantitative data on the dig-

italization of pDNA manufacturing is still 

scarce, it is reasonable to anticipate bene-

fits comparable to those reported in other 
biomanufacturing domains where AI and 

advanced analytics have been integrated—

such as improvements of throughput 

upstream (15–30%) and downstream (up 
to 60%) and significant improvements in 
resource efficiency and process robustness 
[64]. The digital shift in pDNA production 

is thus expected to enhance efficiency, sus-

tainability, and decision-making in a simi-

lar manner.

Moving forward, academia can play a 

crucial role in exploring innovative digita-

lization approaches for early-stage bioman-

ufacturing research, while industry should 

focus on pilot-testing digital tools in pro-

cess development to assess their practical 

applications. Policymakers, on the other 

hand, must work to develop clear guidelines 

and regulatory frameworks that support 

the adoption of digitalization in biomanu-

facturing, ensuring both compliance and 

technological advancement. In conclusion, 

incorporating digitalization into manu-

facturing development is a strategic move 

towards efficiency and sustainability; how-

ever, its full potential depends on further 

research, industry validation, and support-

ive regulatory frameworks to ensure seam-

less integration and long-term impact.
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