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The importance of large-scale production of plasmid DNA (pDNA) has increased steadily
over the years due to the development of a growing number of direct and indirect appli-
cations. To meet the growing demand for pDNA, significant efforts must be made towards
improving its manufacturing. In particular, the digitalization of pDNA manufacturing could
enable faster process optimization, support data-driven decision-making, and contribute to
waste reduction and more sustainable operations. In this commentary article, we further
contend that the benefits of digitalization should be captured early on at the research and
development stage of the manufacturing process. To support this vision, we present a con-
ceptual framework for incorporating digitalization into pDNA process development, discuss
technological enablers, explain how digital methods could overcome traditional limitations,
and delve into implementation considerations.
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PLASMIDS AND THE vehicles to deliver the molecular compo-
DIGITALIZATION OF nents of gene editor systems. Moreover,
BIOMANUFACTURING plasmids serve as essential raw materials

for the manufacturing of engineered cell
Plasmids are pervasive across the geneand products (e.g., CAR-T cells) or of other bio-
cell therapy industry of today [1,2]. As bio- logicals (e.g., viral vectors and mRNA). The
logicals, they are used to deliver genetic ability to manufacture plasmids cost-effec-
information to patient target cells or as tivelyonalargescaleisthuscriticalformany
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biopharmaceutical companies and research
institutions [3]. In other circumstances, for
example, in the production of lentiviral vec-
tors for cell therapies, the actual challenge
may be to develop GMP-compliant scale-
down models capable of producing pDNA in
a cost-effective manner [4]. One approach to
increase efficiency, throughput and scalabil-
ity, conserve resources, and minimize envi-
ronmental impact in pDNA manufacturing
is to embrace digitalization [3].

A fundamental principle of digitaliza-
tion is the mapping of the physical space in
a digital object via a digital twin (DT) [5]. A
DT is a continuously updated in silico rep-
resentation of a real-world system or pro-
cess that acts as an identical counterpart in
the digital space. An essential feature of a
fully functional DT is a two-way dataflow
between the physical system and its digital
counterpart [6]. Ultimately, the DT gener-
ates a dynamic or static profile of the pro-
cess based on historical and near-real-time
measurements across an array of dimen-
sions [6]. DTs are valuable for system sim-
ulation, integration, testing, monitoring,
maintenance and even training, and are
an essential building block of model-based
systems engineering. Furthermore, in con-
junction with mathematical modeling,
DTs are likely essential for the successful
implementation of continuous biomanu-
facturing, as they enable real-time process
control, predictive decision-making, and
rapid optimization [7,8].

The creation of a DT of a biomanufac-
turing process has been advocated as one
of the most compelling benefits of digitali-
zation [6-9]. While as a first approach this
will involve the digitalization of well-estab-
lished manufacturing processes that are
alreadyinroutine operation, several authors
argue that the benefits of biomanufacturing
should be captured early on at the research
and development stage [10,11]. The
development of a process compliant with
Industry 4.0, which is characterized by the
integration of digital technologies—such
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as the Internet of Things (IoT), artificial
intelligence, data analytics, and automa-
tion—into manufacturing systems, inher-
ently also demands the development of its
DT [12]. The research question underlying
this approach is therefore ‘How to develop
and incorporate a digitalization framework
in the conceptual design, research and
development of (pDNA) biomanufactur-
ing processes?’. Such a framework is cur-
rently lacking, as most efforts are focused
on digitizing established biomanufacturing
processes.

THE LIMITATIONS OF TRADITIONAL
PROCESS DEVELOPMENT

A real shift to a biomanufacturing sce-
nario, where a physical process and its dig-
ital counterpart communicate, interact two
ways, and operate in synchrony without
interruption, requires digitalization to be
embedded early in the biomanufacturing
research and development stage [10]. This
entails replacing the traditional process
development pipeline, which follows a lin-
ear, step-by-step methodology known to be
time consuming and laborious [10,11,13],
with a digitally centered process develop-
ment approach (Figure 1). A process draft is
usually designed based on the available lit-
erature, in-house experience, rules of thumb
and GMPs. Key information to bear in mind
pertains to final product specifications (e.g.,
PDNA topology, biological potency, impurity
limits), some of which are established with
guidance from regulations [14]. Examples
of process-related impurities in pDNA man-
ufacturing include host cell components
(proteins, genomic DNA, RNA, endotoxins),
residual reagents (solvents, salts, enzymes),
and leachables from equipment, resins or
filters. The final specifications will differ
depending on the final application of the tar-
get pDNA [14]. For example, more stringent
quality requirements regarding impurities
will be in place if the pDNA is to be used in
therapeuticapplications, as opposed to cases
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PFIGURE 1

Replacing the (A) traditional approach to biomanufacturing process development by a (B) digitally centered
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where it serves as a raw material for the
manufacture of a viral vector. Today, several
pDNA manufacturing platforms have been
developed, which can be readily adopted for
the production of various pDNA molecules.
Nevertheless, the introduction of new meth-
odologies or process modifications targeted
at generating more efficient processes will
still require several process development
cycles, relying heavily on human operators
performing lab-based experimentation at
small scale (typically 100 mL-10 L cell cul-
ture). The disadvantages of this approach
are well recognized and include:

» Time and cost inefficiencies

» Limited process understanding and data
utilization

ISSN 2752-5422 - Published by Biolnsights Publishing Ltd, London, UK

» Poor scalability
» Human error and variability
» Regulatory compliance challenges

A digitally centered process development
approach, paired with automated experi-
mentation, could contribute to delivering
new methodologies that generate more
efficient processes, ultimately mitigating
some of these limitations [10,11].

ENVISIONING A DIGITALLY
CENTERED PDNA PROCESS

DEVELOPMENT
A (digitally centered approach to pro-
cess development relies heavily on
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incorporating digitalization concepts and
computational tools at the early stages
of process conceptualization, design, and
development. The technological enablers of
this approach include mathematical model-
ling (mechanistic, hybrid, and data-driven
models), computational fluid dynam-
ics, machine learning and Al, generative
Al, automation and smart sensors, high
throughput (HT) experimentation, work-
flow management systems, and edge and
cloud computing (Table 1). This approach

offers several benefits, including acceler-
ating development, reducing consumables
by avoiding uninformative experiments,
requiring fewer experiments, lowering
error rates, and enhancing process under-
standing. Furthermore, by the end of the
process development stage, digital models
will be readily available to support technol-
ogy transfer, process scale-up, and subse-
quently routine operation and control.

Here we present our view on how a digi-
tally centered alternative can be utilized to

»TABLE 1

Scientific and technological tools for digitally centered plasmid DNA process development.

Enabler Description

Mathematical Mathematical process models of diverse nature (mechanistic, surrogate, data-driven, hybrid) are set up to provide

modeling information about key properties, variables and performance parameters/indicators (e.g., yields) of the different
sub-processes (e.g., cell culture, unit operations), the interactions between process parameters, and product quality
attributes (e.g., purity); these models are a key component of a DT, providing deep insights into the current state of the
process through simulation

CFD Software tools for performing CFD dynamics simulations can play a crucial role in bioprocess scale-up by enabling the

simulation and analysis of fluid flows within bioreactors; this facilitates the optimization of mixing, mass transfer, and
overall reactor design, which are essential for efficient scale-up

Machine learning and Al and machine learning contribute to smart automation and analytics through the identification of optimal process
Al parameters, automation of complex tasks, prediction of potential issues; enabling the shift to predictive rather than
reactive process control

Generative Al
(large-language
models)

If trained on large and adequate datasets of bioprocess parameters, LLMs can suggest improvements to increase
efficiency and product quality, or assist in designing more effective experiments, potentially reducing the number of
iterations required in bioprocess development

Bioprocessing workflows can be optimized, monitored and controlled in real-time by integrating advanced
technologies such as sensors and loT devices for data acquisition, and Al and machine learning for predictive modeling
and decision-making; automated systems can handle tasks such as sampling, analysis, and equipment maintenance
and contribute to enhance process efficiency, improve product quality, and reduce variability by minimizing human
intervention

Automation and smart
sensors

HT experimentation using robotic platforms enable rapid, parallel execution of numerous experiments, significantly
accelerating process optimization and development; these systems can dispense reagents, mix solutions, and transfer
samples, minimizing human error and increasing experimental throughput; it is thus possible to explore a broader
range of parameters and conditions simultaneously, leading to faster identification of optimal production conditions;
if integrated with advanced data analytics and computational modeling, HT experimentation can enhance decision-
making capabilities and reduce development timelines

HT experimentation

Workflow management
systems (WMS)

By implementing WMS, processes can become fully documented, traceable and reproducible, allowing for reuse of
the generated data; WMS enhance interoperability, thus enabling better collaboration between scientists; they allow
for the seamless choreographing of tasks, ensuring that complex workflows are executed efficiently and in the correct
sequence; additionally, WMS facilitate structured storage for data and metadata, preserving essential context for
future analyses; built-in error detection mechanisms help identify issues early, triggering automated error handling
procedures to maintain workflow reliability and data integrity

Edge computing enables real time data processing and control of the biomanufacturing facilities, empowering quick
adjustments; cloud computing provides scalable storage, big data analytics, and collaborative platforms for long term
data analysis, process optimization and predictive modelling

Edge and cloud
computing

CFD: computational fluid dynamics. HT: high throughput. WMS: Workflow Management Systems.

Nucleic Acid Insights 2025; 2(4), 109-121 - DOI: 10.18609/nuc.2025.018

112



aid, guide and accelerate the development
and establishment of a pDNA manufactur-
ing process. The overall goal is to develop
an integrated model toolset that exam-
ines the entire biomanufacturing process,
providing clarity on bottlenecks, high-
lighting optimization opportunities, and
ultimately enhancing superior product
quality and efficiency in laboratory opera-
tions. Specifically, we propose an approach
that involves synergies between:

» Experimentation
» Digitalization

» HT model-assisted experimentation
activities (Figure 2)

These intertwined collaborative research
activities should cover the upstream and
downstream processing stages of plasmid
manufacturing.

Experimental setting up of
a benchmark process

An experimental benchmark process is
initially defined based on available knowl-
edge and rules of thumb [15]. This heu-
ristic approach involves the selection of
a strain of the producer Escherichia coli
with genotypes suitable for pDNA ampli-
fication, the preparation of banks of cells
transformed with the target pDNA, and
the set-up of key analytics (e.g., gel elec-
trophoresis, HPLC, ELISA). Then, a work-
ing pDNA manufacturing process should
be drafted and established at lab scale.
This entails cultivating cells to amplify
PDNA and then setting up a downstream
processing train of operations to recover,
isolate, and purify the pDNA. The goal
is to quickly obtain initial datasets (e.g.,
time series data describing microbial cell
culture and pDNA amplification, recovery
yields of unit operations, etc.) that can
be used to jump start and advance model

COMMENTARY

development and guide HT experimenta-
tion for process optimization.

Modelling of upstream
and downstream processing

Mathematical models are developed to rep-
resent, analyze, and predict the complex
system surrounding pDNA manufactur-
ing. This calls for selecting an appropriate
model structure that aligns with the bio-
logical and physical nuances of the differ-
ent operations in the manufacturing train.
The models should be able to describe and
predict the dynamics of cell growth and
pDNA amplification. This requires the
establishment of time course relations
between variables such as the concentra-
tion of key nutrients (e.g., carbon source),
biomass concentration, and pDNA titers
[16,17]. Stoichiometric models of E. coli
metabolism can also be useful in this con-
text [18,19]. Models used to describe the
isolation and purification of pDNA from the
E. coli cells should predict the performance
metrics of various operations (e.g., tan-
gential flow filtration, precipitation, chro-
matography), especially in terms of yield
and purification efficiency. Draft models
for a particular operation are first tested
using the corresponding initial data sets.
Simulation results are then used to guide
the design of additional experiments, such
as model-based design of experiments
[20-22]. The new sets of experimental
data are further used to refine and validate
the models. These experimental/modelling
development cycles should be repeated
until a satisfactory model is obtained. An
illustration of this approach is provided by
Muller et al. in the context of rAAV produc-
tion [23]. Starting with shaker flask data,
satisfactory process models were obtained
after two to three iterative cycles combin-
ing high-throughput (HT) runs in a fully
automated microbioreactor system with
hybrid model refinement. Benchmarking
this approach against a statistical Design
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of Experiments method showed that the
model-based experimental design consis-
tently produced higher rAAV titers with
fewer total experiments. Rigorous valida-
tion should be made by comparing model
outputs against separate experimental
datasets. The outcome is a set of robust
models that reflect experimental observa-
tions, provide insights into the process and
support subsequent process optimization.

High-throughput model-assisted
experimentation activities

Optimization of pDNA manufacturing can
then be performed by resorting to auto-
mated HT screening platforms [24-26],
guided by the predictive models developed.
Such platforms, which are being introduced
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into modern process development labs, can
be used to screen process conditions and
operating variables that maximize the per-
formance of the unit operation being tested
[27-29]. Experimental workflows can be
integrated and automated in a laboratory
environment by resorting to heterogeneous
devices, including liquid handling stations,
parallel cultivation systems, and mobile
robots [30]. For example, advanced liquid
handling stations with embedded parallel
mini bioreactors can be used to run up to
48 parallel cell culture/pDNA amplification
dynamic experiments in a process-wide
design and optimization scheme [31,32].
The integration of a workflow management
system [33] ensures the flexible yet reliable
handling of complex HT experiments and
FAIR data storage—findable, accessible,




interoperable, and reusable (FAIR) [34].
Here, model-based tools can enhance infor-
mation gain and process robustness by
enabling, for example, real-time process
monitoring, the selection of the most rele-
vant sampling times, and the optimization
of process control. Many downstream pro-
cessing unit operations used in pDNA man-
ufacturing such as precipitation [35,36]
and chromatography [37,38], can also be
optimized using HT platforms [28,29]. One
important aspect to mention is that HT
experimentation critically depends on HT
analytics to rapidly evaluate multiple con-
ditions [39]. For example, an evaluation of
48 parallel cell culture/pDNA amplification
experiments run on a mini bioreactor plat-
form would undoubtedly involve assessing
pDNA titers and topology. Since most scale-
down reactor systems only incorporate DO
and pH measurements, this would require
collecting samples, performing miniprep
isolation, and running agarose or capillary
electrophoresis analysis in parallel, which
is not trivial to implement [40]. Further
challenges include the small volumes of
scale-down reactors, which restrict the
sampling frequency and volume, as well
as the large number of samples generated.
Reality shows that, unfortunately, analyti-
cal capacity often lags behind experimental
throughput, creating a significant bottle-
neck [39]. This mismatch between experi-
mental throughput and analytical capacity
can slow down decision-making and delay
process optimization, particularly in com-
plex biological systems. Notwithstanding
the analytical challenge, the large amounts
of heterogeneous experimental data gen-
erated by HT platforms contain valuable
information that can be explored using
a wide variety of machine learning (ML)
approaches [41-43]. Examples of data-
driven methods that may be useful for opti-
mization purposes include artificial neural
networks [44], Bayesian optimization [45-
47], deep reinforcement learning [48], and
others [49].
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Key benefits of HT experimentation
include accelerated development, and
the ability to perform a higher number
of experiments while keeping the num-
ber of needed consumables low due to the
smaller volumes. Applying model-based
methods to design experiments with opti-
mal information gain ensures that only
the minimum number of experiments is
performed [50,51]. The new data gener-
ated can be used to refine and validate the
models that have been developed. The goal
of these activities is to determine the opti-
mal conditions for pDNA manufacturing
and to develop a reliable digital model of
the process. On the other hand, one should
be aware that miniaturized systems may
not replicate large-scale pDNA manufac-
turing (e.g., bioreactor dynamics and sub-
strate heterogeneities/gradients [52]), and
that analytical and data handling limita-
tions can hinder the translation of results.
Furthermore, the complexity of integrating
automated platforms and the resources
required to ensure regulatory compliance
cannot be overstated.

Model integration
and process validation

Ideally, models describing both upstream
and downstream processing sections should
bemergedinto a singular, unified model. This
integration is still perceived as a bottleneck,
often because upstream and downstream
process models have focused on describing
different sets of variables. Once integration
is achieved, the consolidated model should
be rigorously validated against lab-scale
datasets (e.g., at the 1-2 L lab scale), ensur-
ingitreflects real system dynamics, and that
itis robust and reliable [53].

TRANSLATION INSIGHT

Embracing digitalization concepts and
tools at the early stages of process con-
ceptualization, design, and development
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can accelerate development, reduce con-
sumables and error rates, increase the
number of informative experiments, and
ultimately improve process understanding.
In the context of plasmid manufacturing,
this digitally centered approach to process
development requires synergies and inter-
connection of:

» Experimentation
» Digitalization

» HT model-assisted experimentation
activities

However, the field is in its infancy, with
several areas requiring further study or
pilot testing.

For once, many of the digitalization
tools at our disposal (Table 1) are still under-
explored in the context of process develop-
ment. For example, there is clearly room for
the development of LLMs tailored to the
conceptual development of processes for
the biomanufacturing of a particular class
of bioproducts (e.g. nucleic acids, pDNA,
mRNA), leveraging existing literature data
and pre-existing knowledge (e.g., company
data, expertise). Such dedicated LLMs
could be invaluable, for example, in the
initial drafting of a manufacturing process.
The use of CFD in the context of process
scale-up can also be considered sub-optimal
due to its high computational cost, reliance
on simplifications that may not fully cap-
ture complex interactions, and challenges
in accurately predicting scale-dependent
phenomena (e.g. turbulence, mixing, and
heat transfer). Another important area that
requires investment is the development of
more advanced and refined mathematical
models capable of accurately representing
complex biological systems, for example,
microbial cell culture and pDNA amplifi-
cation. The importance of mathematical
models in conjunction with the adoption of
digitalization will be especially relevant in
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the context of continuous manufacturing,
which is an industry trend likely to change
the way plasmids are manufactured in the
future [54-56].

Additionally, the full technical integra-
tion of the digitalization tools available
(Table 1) in the context of process develop-
ment is still a bottleneck. Clearly, we need
to improve our ability to manage the loop
of hypothesis formulation, model-based
experimental design, high-throughput
experimentation, data evaluation, model
adaptation, conclusion, and new hypoth-
esis generation, which still requires con-
siderable human intervention. Although
we are far from creating a ‘Robot Process
Development Scientist’ designed to auton-
omously automate process development,
akin to the Robot Scientist discussed by
King et al. [57], the potential for digitali-
zation to contribute to the generation of
process knowledge is huge. The necessity
to upgrade technological infrastructure
for real-time data integration in process
development laboratories is also imper-
ative. Examples include the integration
of HT experimentation and advanced
analytics capabilities, the implementa-
tion of integrated Laboratory Information
Management Systems (LIMS) or Electronic
Lab Notebooks (ELN) [58], the replace-
ment of legacy laboratory instruments
with digitally enabled, IoT-compatible sen-
sors and Process Analytical Technology
tools (e.g., Raman, NIR, FTIR, and in situ
microscopy) [59], and the installation of
systems to ensure data integrity, traceabil-
ity, and regulatory compliance in digital
environments [60].

The implementation of digitaliza-
tion in biomanufacturing—both in pro-
cess development and operation—further
requires a fundamental shift in how data
are acquired and managed, aligning with
the FAIR principles to ensure seamless
integration, traceability, and utility across
digital systems [61,62]. For example, this
requires transforming heterogeneous data




formats (e.g., PDFs, Excel sheets) into struc-
tured, machine-readable formats (e.g., XML,
JSON) to enable real-time synchronization
between physical systems and their digital
counterparts. Furthermore, the thorough
tracking and recording of all tasks per-
formed throughout experimentation at both
experimental and computational levels is
critical to ensure data reproducibility [33].
Another important aspect of digitalization
is data safety, also known as cybersecurity,
which involves managing data in a respon-
sible manner to minimize the risk of a data
breach. However, users are often not suffi-
ciently aware of such safety aspects [63].
One significant challenge in embracing
digitally centered process development is
resistance to change among stakehold-
ers. This can be addressed by demonstrat-
ing clear return on investment, ensuring
data security, and fostering cross-disci-
plinary collaboration to build trust in dig-
ital innovations. This resistance may be
exacerbated further by the lack of user
knowledge—many potential users sim-
ply do not know how to use digital tools
effectively or where to begin—as well as
by the lack of tools specifically tailored for
bioengineering. Clearly, a skilled workforce
with competencies that differ from those
of the past must be trained to understand
the importance and value of digitalization
tools, to utilize the new methodologies and
associated devices in the laboratory, and to
handle complex data outputs. This requires
universities and research institutes to
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develop world-class educational programs
in digital biomanufacturing, which are cur-
rently not widely available.

Although quantitative data on the dig-
italization of pDNA manufacturing is still
scarce, it is reasonable to anticipate bene-
fits comparable to those reported in other
biomanufacturing domains where Al and
advanced analytics have been integrated—
such as improvements of throughput
upstream (15-30%) and downstream (up
to 60%) and significant improvements in
resource efficiency and process robustness
[64]. The digital shift in pDNA production
is thus expected to enhance efficiency, sus-
tainability, and decision-making in a simi-
lar manner.

Moving forward, academia can play a
crucial role in exploring innovative digita-
lization approaches for early-stage bioman-
ufacturing research, while industry should
focus on pilot-testing digital tools in pro-
cess development to assess their practical
applications. Policymakers, on the other
hand, must work to develop clear guidelines
and regulatory frameworks that support
the adoption of digitalization in biomanu-
facturing, ensuring both compliance and
technological advancement. In conclusion,
incorporating digitalization into manu-
facturing development is a strategic move
towards efficiency and sustainability; how-
ever, its full potential depends on further
research, industry validation, and support-
ive regulatory frameworks to ensure seam-
less integration and long-term impact.

REFERENCES

1.  Ohlson J. Plasmid manufacture is the
bottleneck of the genetic medicine
revolution. Drug Discov. Today 2020;
25(11), 1891-1893.

2.  Schmeer M, Buchholz T, Schleef M.
Plasmid DNA manufacturing for indirect
and direct clinical applications.

Hum. Gene Ther. 2017; 28(10), 856-861.

3. Prazeres DMF. The supporting role
of plasmids in gene and cell therapy.
Cell Gene Therapy & Insights 2023; 9(5),
755-762.

4.  Bakker NAM, De Boer R, Marie C,
et al. Small-scale GMP production of
plasmid DNA using a simplified and
fully disposable production method.
J. Biotechnol. 2019; 306, 100007.

ISSN 2752-5422 - Published by Biolnsights Publishing Ltd, London, UK

117



NUCLEIC ACID INSIGHTS

10.

11.

12.

13.

14.

15.

118

Narayanan H, Luna MF, Von Stosch M,
et al. Bioprocessing in the digital age:
the role of process models. Biotechnol. ].
2020; 15(1), 1900172.

Gargalo CL, De Las Heras SC, Jones MN,
et al. Towards the Development of
Digital Twins for the Bio-manufacturing
Industry. In: Digital Twins (Editors:
Herwig C, Portner R, Méller ]). 2020;
Springer International Publishing, 1-34.

Udugama IA, Lopez PC, Gargalo CL,
Li X, Bayer C, Gernaey KV. Digital twin
in biomanufacturing: challenges and

opportunities towards its implementation.

Syst. Microbiol. Biomanuf. 2021; 1(3),
257-274.

Tiwari A, Masampally VS, Agarwal A,
Rathore AS. Digital twin of a continuous
chromatography process for mAb
purification: design and model-based
control. Biotechnol. Bioeng. 2023; 120(3),
748-766.

Zobel-Roos S, Schmidt A, Uhlenbrock L,
Ditz R, Késter D, Strube J. Digital Twins
in Biomanufacturing. In: Digital Twins
(Editors: Herwig C, Portner R, Moller J).
2020; Springer International Publishing,
181-262.

von Stosch M, Portela RM, Varsakelis C.
A roadmap to Al-driven in silico process
development: bioprocessing 4.0 in
practice. Curr. Op. Chem. Eng. 2021; 33,
100692.

Isoko K, Cordiner JL, Kis Z, Moghadam PZ.
Bioprocessing 4.0: a pragmatic review and
future perspectives. Digital Discov. 2024;
3(9), 1662-1681.

Hermann M, Pentek T, Otto B. Design
Principles for Industrie 4.0 Scenarios. In:
2016 49th Hawaii International Conference
on System Sciences (HICSS). 2016; IEEE,
3928-3937.

Lye G, Hubbuch J, Schroeder T,
Willimann E. Shrinking the costs of
bioprocess development. BioProcess Int.
2009; 38(2), e3230.

Prazeres DMF. Plasmid Biopharmaceuticals:

Basics, Applications, and Manufacturing.
2011; Wiley, 590.

Baumann P, Hubbuch J. Downstream
process development strategies for
effective bioprocesses: trends, progress,
and combinatorial approaches.

Eng. Life Sci. 2017; 17(11), 1142-1158.

Nucleic Acid Insights 2025; 2(4), 109-121 - DOI: 10.18609/nuc.2025.018

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Bohle K, Ross A. Plasmid DNA production
for pharmaceutical use: role of specific
growth rate and impact on process
design. Biotechnol. Bioeng. 2011; 108(9),
2099-2106.

Lopes MB, Martins G, Calado CRC. Kinetic
modeling of plasmid bioproduction

in Escherichia coli DH5a cultures over
different carbon-source compositions.

J. Biotechnol. 2014; 186, 38-48.

Gotsmy M, Strobl F, Weif3 F, et al. Sulfate
limitation increases specific plasmid DNA
yield and productivity in E. coli fed-batch
processes. Microb. Cell Fact. 2023; 22(1),
242,

Xu Z, Zhu X, Mohsin A, et al.

A machine learning-based approach for
improving plasmid DNA production in
Escherichia coli fed-batch fermentations.
Biotechnol. J. 2024; 19(6), 2400140.

Franceschini G, Macchietto S.
Model-based design of experiments for
parameter precision: state of the art.
Chem. Eng. Sci. 2008; 63(19), 4846-4872.

Chakrabarty A, Buzzard GT, Rundell AE.
Model-based design of experiments for
cellular processes. WIREs Mech. Dis. 2013;
5(2), 181-203.

Kramer D, Wilms T, King R. Model-based
process optimization for the production of
macrolactin D by Paenibacillus polymyxa.
Processes 2020; 8(7), 752.

Miiller C, Siegwart G, Heider S, et al.
Iterative hybrid model-based optimization
of rAAV production. Biotechnol. Prog.
2025; e70006.

Kemmer A, Fischer N, Wilms T, et al.
Nonlinear state estimation as tool
for online monitoring and adaptive
feed in high throughput cultivations.
Biotechnol. Bioeng. 2023; 120(11),
3261-3275.

Janzen NH, Striedner G, Jarmer J,
Voigtmann M, Abad S, Reinisch D.
Implementation of a fully automated
microbial cultivation platform for strain
and process screening. Biotechnol. J. 2019;
14(10), 1800625.

Velez-Suberbie ML, Betts JP], Walker KL,
Robinson C, Zoro B, Keshavarz-Moore E.
High throughput automated microbial
bioreactor system used for clone selection
and rapid scale-down process optimization.
Biotechnol. Prog. 2018; 34(1), 58-68.




27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Cruz Bournazou MN, Barz T,

Nickel DB, et al. Online optimal
experimental re-design in robotic

parallel fed-batch cultivation facilities.
Biotechnol. Bioeng. 2017; 114(3), 610-619.

Baumann P, Hubbuch J. Downstream
process development strategies for
effective bioprocesses: trends, progress,
and combinatorial approaches.

Eng. Life Sci. 2017; 17(11), 1142-1158.

Sao Pedro MN, Silva TC, Patil R, Ottens M.
White paper on high-throughput process
development for integrated continuous
biomanufacturing. Biotechnol. Bioeng.
2021; 118(9), 3275-3286.

Kaspersetz L, Englert B, Krah F,

Martinez EC, Neubauer P,

Cruz Bournazou MN. Management

of experimental workflows in robotic
cultivation platforms. SLAS Technol. 2024;
29(6), 100214.

Kemmer A, Cai L, Cruz Bournazou MN,
Neubauer P. High-Throughput Expression
of Inclusion Bodies on an Automated
Platform. In: Inclusion Bodies (Editors: Kopp ],
Spadiut 0). 2023; Springer US, 31-47.

Kim JW, Krausch N, Aizpuru ], et al. Model
predictive control and moving horizon
estimation for adaptive optimal bolus
feeding in high-throughput cultivation
of E. coli. Comput. Chem. Eng. 2023; 172,
108158.

Mione FM, Kaspersetz L, Luna MF, et al.
A workflow management system for
reproducible and interoperable high-
throughput self-driving experiments.
Comput. Chem. Eng. 2024; 187, 108720.

Wilkinson MD, Dumontier M,
Aalbersberg 1], et al. The FAIR guiding
principles for scientific data management
and stewardship. Sci Data 2016; 3(1),
160018.

Nfor BK, Hylkema NN, Wiedhaup KR,
Verhaert PDEM, Van Der Wielen LAM,
Ottens M. High-throughput protein
precipitation and hydrophobic

interaction chromatography: salt effects
and thermodynamic interrelation.

J. Chromatogr. A 2011; 1218(49), 8958-8973.

Gu Q, Li Z, Coffman JL, Przybycien TM,
Zydney AL. High throughput solubility
and redissolution screening for antibody
purification via combined PEG and zinc
chloride precipitation. Biotechnol. Prog.
2020; 36(6), e3041. 5.

37.

38.

39.

40.

42.

43.

44,

45.

46.

ISSN 2752-5422 - Published by Biolnsights Publishing Ltd, London, UK

COMMENTARY

Coffman JL, Kramarczyk JF,

Kelley BD. High-throughput screening of
chromatographic separations: I. Method
development and column modeling.
Biotechnol. Bioeng. 2008; 100(4), 605-618.

Silva TC, Eppink M, Ottens M. Digital
twin in high throughput chromatographic
process development for monoclonal
antibodies. J. Chromatogr. A 2024; 1717,
464672.

Konstantinidis S, Kong S,
Titchener-Hooker N. Identifying
analytics for high throughput bioprocess
development studies. Biotechnol. Bioeng.
2013; 110(7), 1924-1935.

Fang S, Sinanan D], Perez MH,
Cruz-Quintero RG, Jadhav SR.
Development of a high-throughput
scale-down model in Ambr® 250 HT for
plasmid DNA fermentation processes.
Biotechnol. Prog. 2024;40(4), e3458.

Duong-Trung N, Born S, Kim JW, et al.
When bioprocess engineering meets
machine learning: a survey from the
perspective of automated bioprocess
development. Biochem. Eng. J. 2023; 190,
108764.

Helleckes LM, Hemmerich J, Wiechert W,
Von Lieres E, Griinberger A. Machine
learning in bioprocess development: from
promise to practice. Trends Biotechnol.
2023; 41(6), 817-835.

Albino M, Gargalo CL, Nadal-Rey G,
Albak MO, Krithne U, Gernaey KV. Hybrid
modeling for on-line fermentation
optimization and scale-up: a review.
Processes 2024; 12(8), 1635.

Tavasoli T, Arjmand S, Ranaei Siadat SO,
Shojaosadati SA, Sahebghadam Lotfi

A. Arobust feeding control strategy
adjusted and optimized by a neural
network for enhancing of alpha
1-antitrypsin production in Pichia pastoris.
Biochem. Eng. J. 2019; 144, 18-27.

Rosa SS, Nunes D, Antunes L, Prazeres DMF,
Marques MPC, Azevedo AM. Maximizing
mRNA vaccine production with Bayesian
optimization. Biotechnol. Bioeng. 2022;
119(11), 3127-3139.

Gisperg F, Klausser R, Elshazly M,

Kopp J, Brichtova EP, Spadiut O. Bayesian
optimization in bioprocess engineering—
where do we stand today?

Biotechnol. Bioeng. 2025; 122(6),
1313-1325.

119



NUCLEIC ACID INSIGHTS

120

47.

48.

49.

50.

51.

52.

53.

54.

55.

AFFILIATIONS

Rosa SS, Nunes D, Grinsted J, et al.
Exploring Bayesian methods in
chromatographic development: increasing
the capacity of the mRNA affinity ligand.
Sep. Pur. Technol. 2025; 367, 132881.

Treloar NJ, Fedorec AJH, Ingalls B,
Barnes CP. Deep reinforcement learning
for the control of microbial co-cultures
in bioreactors. PLOS Comput. Biol. 2020;
16(4), e1007783.

Khuat TT, Bassett R, Otte E,

Grevis-James A, Gabrys B. Applications of
machine learning in antibody discovery,
process development, manufacturing and
formulation: current trends, challenges,
and opportunities. Comput. Chem. Eng.
2024; 182, 108585.

Abt V, Barz T, Cruz-Bournazou MN,

et al. Model-based tools for optimal
experiments in bioprocess engineering.
Curr. Op. Chem. Eng. 2018; 22, 244-252.

Kim JW, Krausch N, Aizpuru ], et al. Model
predictive control guided with optimal
experimental design for pulse-based
parallel cultivation. IFAC-Pap. OnLine
2022; 55(7), 934-939.

Anane E, Garcia AC, Haby B, et al.

A model-based framework for parallel
scale-down fed-batch cultivations

in mini-bioreactors for accelerated
phenotyping. Biotechnol. Bioeng. 2019;
116(11), 2906-2918.

Neubauer P, Cruz N, Glauche F,

Junne S, Knepper A, Raven M. Consistent
development of bioprocesses from
microliter cultures to the industrial scale.
Eng. Life Sci. 2013; 13(3), 224-238.

Hernandez-Beltran JCR,

San Millan A, Fuentes-Herndndez A,
Pena-Miller R. Mathematical models
of plasmid population dynamics.
Front. Microbiol. 2021; 12, 606396.

Narayanan H, Sponchioni M, Morbidelli M.
Integration and digitalization in the
manufacturing of therapeutic proteins.
Chem. Eng. Sci. 2022; 248, 117159.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Rathore AS, Thakur G, Kateja N.
Continuous integrated manufacturing for
biopharmaceuticals: a new paradigm or an
empty promise? Biotechnol. Bioeng. 2023;
120, 333-351.

King RD, Rowland ], Oliver SG, et al.
The automation of science. Science 2009;
324(5923), 85-89.

Argento N. Institutional ELN/LIMS
deployment: highly customizable
ELN/LIMS platform as a cornerstone of
digital transformation for life sciences
research institutes. EMBO Reports 2020;
21(3), e49862.

Gerzon G, Sheng Y, Kirkitadze M. Process
analytical technologies—advances

in bioprocess integration and future
perspectives. J. Pharm. Biomed. Anal. 2022;
207,114379.

Ullagaddi, P. Digital transformation in the
pharmaceutical industry: ensuring data
integrity and regulatory compliance. I/MB
2024;12,110-120.

Wise ], De Barron AG, Splendiani A, et al.
Implementation and relevance of FAIR
data principles in biopharmaceutical R&D.
Drug Discov. Today 2019; 24(4), 933-938.

Habich T, Beutel S. Digitalization concepts
in academic bioprocess development.
Eng. Life Sci. 2024; 24(4), 2300238.

Buyel JF. How digital transformation can
influence workflows, teaching practices
and curricula in (bio)process science and
engineering—an interview series with
stakeholders. Fut. Ed. Res. 2024; 2(3),
205-224.

Pelletier JP, Spiegl M, Esteve PO, Seliga J,
Semishchenko K, Shah S. Human—Machine
Harmonization to Upgrade Biopharma
Production. 2025; McKinsey & Company:.

Duarte Miguel de Franca Teixeira dos Prazeres, Ana Margarida Azevedo, Sofia Oliveira Duarte, and
Ana Rita Silva-Santos, Institute for Bioengineering and Biosciences, Department of Bioengineering,
Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

Krist V Gernaey, and Carina L Gargalo, Department of Chemical and Biochemical Engineering,
Process and Systems Engineering Center (PROSYS), Technical University of Denmark, Kongens
Lyngby, Denmark

Nucleic Acid Insights 2025; 2(4), 109-121 - DOI: 10.18609/nuc.2025.018




COMMENTARY

Rosa Hassfurther, Annina Kemmer, and M Nicolas Cruz Bournazou, Technische Universitat Berlin,
Faculty Il Process Sciences, Institute of Biotechnology, Berlin, Germany

AUTHORSHIP & CONFLICT OF INTEREST

Contributions: The named authors take responsibility for the integrity of the work as a whole, and have
given their approval for this version to be published.

Acknowledgements: None.

Disclosure and potential conflicts of interest: The authors have no conflicts of interest.

Funding declaration: Dr Prazeres has received a research contract from Akron Biotech. Dr Kemmer and
Dr Silva-Santos received financial support from Berliner Chancen-gleichheits Programm (BCP) as part of
the graduate program DiGiTal. This commentary stems from research conducted within the framework of
the project ‘Dig4Bio—Digitalization of Biomanufacturing of Plasmids for the Development of Advanced
Therapy Modalities’, which was recently funded by the European Union under Horizon Europe research
and innovation program to explore and advance knowledge in the field of digitalization (HORIZON-
WIDERA-2023-ACCESS-02-0-101159993). The insights presented derive from the project’s research
activities and aim to foster further discussion and debate within the field.

ARTICLE & COPYRIGHT INFORMATION

Copyright: Published by Nucleic Acid Insights under Creative Commons License Deed CC BY NC ND 4.0
which allows anyone to copy, distribute, and transmit the article provided it is properly attributed in the
manner specified below. No commercial use without permission.

Attribution: Copyright © 2025 Duarte Miguel de Franca Teixeira dos Prazeres. Published by Nucleic Acid
Insights under Creative Commons License Deed CC BY NC ND 4.0.

Article source: Invited; externally peer reviewed.
Submitted for peer review: Mar 31, 2025.
Revised manuscript received: May 19, 2025.
Publication date: May 29, 2025.

ISSN 2752-5422 - Published by Biolnsights Publishing Ltd, London, UK ——— 121



	_Hlk194045827
	_Hlk198309409
	_Hlk196810879
	_Hlk198294384
	_Hlk196812829
	_Hlk196897973
	_Hlk198314148
	_Hlk198314387
	_Hlk196812781
	_Hlk198314177
	_Hlk198278760
	_Hlk198314292
	_Hlk196818913
	_Hlk198279412
	_Hlk198310692
	_Hlk196813371
	_Hlk198294130
	_Hlk198280299
	_Hlk197076795
	_Hlk198314586
	_Hlk197075241
	_Hlk198294564
	_Hlk197076753
	_Hlk198289316
	_Hlk198311758
	_Hlk198311847
	_Hlk198289351
	_Hlk196813729
	_Hlk198294169
	_Hlk198314262

